奇妙的生日悖论:这就是数学的魔力
其实,这是一种错误的思考方式——只是站在你自己的角度来思考有谁与你生日是一样的。
事实上,生日问题指的是在任何23个人中,两人生日相同的概率是多少,而不是你进入了一个有着22个人的房间,房间里有人会和你有相同生日的概率。
我们需要挨个比较房间里每个人之间的生日。
把第一个人与其他22个比较,把第二个人与21个人比较,第三个人与其它20个人比较......直到最后第二个人与最后一个人比较。将23个人之间的所有这些比较加起来,产生22 + 21 + 20 ... + 1 = 23 x 22/2 = 253种不同的搭配,所以产生一对成功匹配的生日并非不可思议。
人们通常是站在这样一个角度来看问题——你进入了一个有着22个人的房间,那么房间里有人会和你有相同生日的概率非常低。原因是这时候只能产生22种不同的搭配,这应该非常好理解。
为了计算出生日相同的概率,我们可以先计算所有人生日都不同的概率。那么,第一人生日是唯一的概率为365/365,第二个人生日是唯一的概率则下降到364/365,以此类推,第23个人生日是唯一的概率为343/365。
然后,把所有23个独立概率相乘,即可得到所有人生日都不相同的概率为:(365/365)× (364/365) × ... ×(343/365) ,得出结果为0.491。那么,再用1减去0.497,就可以得到23个人中有至少两个人生日相同的概率为0.509,即50.9%,超过一半的可能性。
通过公式可以看到,随着房间中人数的增加,至少有两人生日相同的概率也增加。
例如,一个教室有30名学生,那么两个同学生日相同的概率为70%。如果把人数增加到70个人,那么至少有两人生日是同一天的概率为99.9%。
已有0人发表了评论