训练机器识美女 人工智能审美与中国高校男生高度一致

澎湃新闻网   2016-12-20 15:38

  由于受访的研究生们无法指出他们做出判断的细节依据,武筱林团队采用了深度卷积神经网络(CNN)进行研究。在实验中,他们用数据集中的80%进行训练,10%用于验证,剩余10%进行测试。

  实验的结果是,经过训练的机器鉴别“褒义组”和“贬义组”的准确率达到了80%。

继看脸识罪犯,交大教授训练机器识别“清纯”和“妖艳”美女

机器识别准确率达80%

  接着,由于受访男性研究生普遍认为“贬义组”的照片“不自然”,研究者怀疑影响男性做出审美判断的重要依据是女性的化妆程度。但这个猜测很快被实验推翻了。当把所有照片调成灰阶图,重复上面的过程后,CNN分类器的识别准确率只下降了6%。 继看脸识罪犯,交大教授训练机器识别“清纯”和“妖艳”美女

换成灰阶图后的机器识别准确率仍有75%

  此外,浓妆还可能造成面部色彩的对比度和饱和度变高。这点得到了数据分析的证实。“褒义组”的色彩对比度比“贬义组”平均低了14%,饱和度平均低了5%。此外,“贬义组”照片在色彩对比度和饱和度上差异性更大。这与中国传统推崇的“自然美”一致。研究者猜测,这种色彩对比度和饱和度上的差异是机器做出判断的重要依据之一。 “褒义组”和“贬义组”色彩对比度和饱和度的均值和标准差

  “褒义组”和“贬义组”色彩对比度和饱和度的均值和标准差

  最后,武筱林团队排除了机器过度学习的可能性。他们将数据集随机打乱后训练机器,结果机器只能以50%的概率随机“猜”分类。

  文章最后总结道,这篇论文是上一篇论文《基于面部识别的犯罪性推断》的续集,再次证明了人工智能不仅可以通过人脸识别鉴别生物性特征,还可以鉴别社会心理层面的特征。

  澎湃新闻(www.thepaper.cn)在阅读论文时,发现论文中附带的“褒义组”照片中出现了演员杨颖。鉴于武筱林的研究采用了百度图片搜索,样本中出现一些演艺圈人士和“网红”的照片不足为奇。但在采访中,武筱林表示他和他的研究生都对“网红”群体知之甚少。然而,他们已经对这个群体产生了研究兴趣,甚至打算拿她们作样本,进一步检验论文中的算法。

  武筱林说道,他的研究生已经在收集一批女主播的照片,并记录网友对她们长相的综合性评价。在收集完成后,他们将把这一批全新的数据交给人工智能甄别,检验计算机的“审美”是否和网友一致。

  武筱林打比方说道,之前他们就像训练计算机成功通过了高考,但现在他们重新找了一批“怪题” 来考验计算机,看看人工智能的学习能力到底有多强。

  (澎湃新闻见习记者 虞涵棋)

  原标题:交大教授训练机器识美女:“清纯”和“妖艳”

新闻推荐

加载更多...
频道推荐
  • 国务院台办对台湾风灾表达关切
  • 部分“网红医生”假借科普名义敛财,国家卫
  • 江西公务接待推出新举措:公务用餐,全省52
  • 24小时新闻排行榜